Análisis de nodos

¿Cuándo es posible el análisis de nodos?

El análisis de nodos es posible cuando los nodos tienen conductividad  Este método produce un sistema de ecuaciones, que puede resolverse a mano si es pequeño, o también puede resolverse rápidamente usando álgebra lineal en un ordenadorr. Por el hecho de que forme ecuaciones muy sencillas, este método es una base para muchos programas de simulación de circuitos.

¿Qué es un nodo?

Un nodo es un punto de conexión entre dos o mas elementos de un circuito.

Imagen de L.C.K. (ley de corrientes de Kirchhoff):

Procedimiento:



  1. Localice los segmentos de cable conectados al circuito. Estos serán los nodos que se usarán para el método.
  2. Seleccione un nodo de referencia (polo a tierra). Se puede elegir cualquier nodo ya que esto no afecta para nada los cálculos; pero elegir el nodo con más conexiones podría simplificar el análisis.
  3. Identifique los nodos que están conectados a fuentes de voltaje que tengan una terminal en el nodo de referencia. En estos nodos la fuente define la tensión del nodo. Si la fuente es independiente, la tensión del nodo es conocida. En estos nodos no se aplica la LCK.
  4. Asigne una variable para los nodos que tengan tensiones desconocidas. Si la tensión del nodo ya se conoce, no es necesario asignarle una variable. (Véase Figura 2)
  5. Para cada uno de los nodos, se plantean las ecuaciones de acuerdo con las Leyes de Kirchhoff. Básicamente, sume todas las corrientes que pasan por el nodo e iguálelas a 0. Si el número de nodos es n, el número de ecuaciones será por lo menos n-1 porque siempre se escoge un nodo de referencia el cual no se le elabora ecuación.
  6. Si hay fuentes de tensión entre dos tensiones desconocidas, una esos dos nodos como un supernodo, haciendo el sumatorio de todas las corrientes que entran y salen en ese supernodo. Las tensiones de los dos nodos simples en el supernodo están relacionadas por la fuente de tensión intercalada.
  7. Resuelva el sistema de ecuaciones simultáneas para cada tensión desconocida.


A continuación el vídeo explica como se realiza el análisis mas detalladamente.



Supernodo:

En este circuito, inicialmente tenemos dos tensiones desconocidas, V1 y V2. La tensión en la terminal positiva de VB ya se conoce porque la otra terminal se encuentra en el nodo de referencia. La corriente que pasa por la fuente de voltaje VA no puede ser calculada directamente. Además no podemos escribir las ecuaciones de corriente para V1 y V2. Incluso si los nodos no pueden resolverse individualmente, sabemos que la combinación de estos nodos es cero. Esta combinación de los dos nodos es llamada el método de supernodo  y requiere una ecuación adicional, que involucre las tensiones que afectan a la fuente, V1 = V2 + VA.

El sistema de ecuaciones para este circuito es:

\begin{cases}
\frac{V_1 - V_\text{B}}{R_1} + \frac{V_2 - V_\text{B}}{R_2} + \frac{V_2}{R_3} = 0\\V_1 = V_2 + V_\text{A}\\
\end{cases}



EJEMPLO:

Aquí tenemos un ejemplo de análisis de nodo:
La única tensión desconocida en este circuito es V1. Hay tres conexiones en este nodo y por esta razón, 3 corrientes a considerar. Ahora se analiza todas las corrientes que pasan por el nodo, así:

 \begin{cases}
\text{Corriente en R1:} & {V_1- V_s \over R_1} \\
\text{Corriente en R2:} & {V_1\over R_2} \\
\text{Corriente en Is:} & I_s =-I_s \\
\end{cases} \,

Con ley de corrientes de Kirchhoff (L.C.K.), tenemos:

\frac{V_1 - V_S}{R_1} + \frac{V_1}{R_2} - I_S = 0

Se resuelve con respecto a V1:

V_1 = \left( \frac{V_S}{R1} + I_S \right) : \left( \frac{1}{R_1} + \frac{1}{R_2} \right)

Finalmente, la tensión desconocida se resuelve sustituyendo valores numéricos para cada variable. Después de haber obtenido estas ecuaciones y conocer cada tensión, es fácil calcular cualquier corriente desconocida.

V_1 = \left( \frac{5\text{ V}}{100\,\Omega} + 20\text{ mA} \right) : \left( \frac{1}{100\,\Omega} + \frac{1}{200\,\Omega} \right) \approx 4.667\text{ V}

No hay comentarios:

Publicar un comentario